

WHITEPAPER*

September 2017

*Smart contract revised 2

SmartBillions. World’s first multi-bil-
lion-dollar lottery.	

SmartBillions is the first fully decentralized and transparent lot-
tery managed by an Ethereum smart contract. All bets and re-
sults are public and recorded on the Ethereum blockchain with-
out 3rd party involvement. Only 0.25 % of the lottery funds are ac-
cessible to the smart contract operations.

SmartBillions tokens crowdsale ("ICO") goal is set at 200 000 ETH.
90% of the funds raised will be allocated to the Jackpot. The re-
maining funds will be designated to marketing.

SmartBillions SMART Token (SMRT) holders will receive a monthly
dividend starting one month after the initial token offering clos-
ing date. The Estimated Annual Yield is over 30% .

Token Holders are given a revolutionary investment protection
guarantee. They are allowed to redeem Tokens any time after the
SMART Tokens crowdsale closing date and reclaim most of the
invested funds, even in the event of currently unpredictable is-
sues.

�

� � �www.smartbillions.com 2

http://www.smartbillions.com
http://www.smartbillions.com

Welcome to SmartBillions 

�

� � �www.smartbillions.com 3

As experienced decentralization enthusiasts and blockchain profes-
sionals, we created the first independent blockchain lottery based on
the Ethereum smart contract architecture.

SmartBillions is not a company. It is a smart contract conducting a
decentralized Jackpot lottery with a theoretically unlimited Jackpot
potential. We believe that the quality and value of the SmartBillions
contract technology will validate itself. To prove the security of the
SmartBillions contract, the SmartBillions Team will host a hackathon
14 days prior to the start of the limited crowdfunding Token (SMART)
sales. SmartBillions will place 1500 ETH in the contract’s Jackpot
and invite anyone to hack the contract and withdraw the funds. The
hackathon will confirm the contract’s security and ensure that the
Token holders’ investments are protected.

We stand against greedy ICO’s business models, fraudulent inten-
tions and unfair fund and token distribution schemes without gen-
uine products behind them. We stand for the fundamental
blockchain values (decentralization, disintermediation, transparency,
security and freedom), as well as comprehensive investor trans-
parency. The Token and fund distribution models offered by SmartBil-
lions are extremely favorable for the Investors. SmartBillions is the
first ICO to offer downside protection for its crowdsale’s backers.

Blockchain is not just about people - it’s about the technology for the
people. It is revolutionizing old industries which have long been
based on community-unfavorable monopolies and lack of trans-
parency. And just like blockchain and the idea of the smart contract,
SmartBillions is not about the people behind it. It is for the people
that use it and for their fully transparent freedom to win.

The Team

http://www.smartbillions.com
http://www.smartbillions.com

Table of Contents

�

� � �www.smartbillions.com 4

1. PRODUCT INTRODUCTION 5
2. LOTTERY MARKET OVERVIEW 6
3. NEW LEVEL OF TRUST. SMARTBILLIONS MISSION AND VISION 8
4.KEY FEATURES AND COMPETITIVE ADVANTAGES 9

a. Fully comprehensive transparency. 9
 a1. Transparency of lottery draws. 10

b. Highly attractive expected wins. 12
c. Inviolable anonymity. 12
d. Convenient flexibility and user-friendly UX. 13
e. Instant results and payouts. 13
f. Low transaction costs. 13
g. Flexible Ticket value. 13
h. Elimination of cheating opportunities. 13
i. Favorable Ticket sales funds distribution. 13
j. Small house edge. 14

5.MULTICHANNEL PROMOTION SCHEME 15
6.CROWDFUNDING MODEL AND SMART TOKENS (SMRT) 16

a. SMART Token sales funds distribution. 17
b. SMART Token distribution. 18
c. SMART Token key features. 18

- Token redemption possibility. 18
- Token dividend payouts. 19
- Token exchangeability. 20

d. Uniqueness of the SmartBillions crowdsale investment. 20
7. THE SMARTBILLIONS JACKPOT 23
8.SYSTEMIC SECURITY 24

a. The Hackathon. 24
b. Security audit. 25
c. Lottery closing. 25

9.PROJECT TIMELINE 25
10.APPENDIX: The SmartBillions smart contract. 27

http://www.smartbillions.com
http://www.smartbillions.com

1. PRODUCT INTRODUCTION

A blockchain-based smart contract is a decentralized system architecture
existing between a variety of permitted parties, where all intermediaries are
eliminated. Banks and governments are now turning to blockchain systems
as they are cheaper, faster and more secure than existing traditional system
of data organization and exchange. While the blockchain mode of opera-
tions is designed as an expanding order (called blocks) register, it makes
data fundamentally immune to alteration; the orders registered in blocks are
distributed to make any future changes impossible.

The idea of smart contracts based on a decentralized ledger (digital contract,
blockchain contracts, self-executing contracts) emerged from the work of
cryptographer and legal academic Nick Szabo in the early 1990s. In essence,
the idea can be summarized as a conversion of contracts to computer code,
where the storing and replication takes place on the network. The process is
automatically supervised by the network of computer devices participating
in the blockchain circuit. As a result, the ledger feedback loop takes place
and the transfer of assets or receiving of services/products is made possible.

They become an infrastructure that allows a zero conflict and fully transpa-
rent exchange of value (e.g. shares, money, property), bereft of “middleman”
intermediaries. The smart contract infrastructure allows users to easily pay to
the system (ledger), receive value and benefit from the security of automati-
cally-enforced obligations based on rules and penalties specified in the con-
tract.

Conceived and built by Vitalik Buterin, the Ethereum currency optimizes the
smart contract approach by transferring currency (or assets) into the pro-
gram-based platform. From that point on, “the program runs this code and
at some point it automatically validates a condition and it automatically de-
termines whether the asset should go to one person or back to the other
person, or whether it should be immediately refunded to the person who
sent it or some combination thereof,” explained Buterin at a recent DC
Blockchain Summit. Meanwhile, this decentralized ledger system automati-
cally stores and multiples the document – securing its immutability.

�

� � �www.smartbillions.com 5

http://www.smartbillions.com
http://www.smartbillions.com

The SmartBillions is an Ethereum smart contract where all operations are
recorded on the blockchain and public. SmartBillions is a lottery where
players chose 6 numbers between 0 and 15 and set their ticket values. Pay-
outs require at least 2 correct matches. The lottery results are taken from the
hash of the third subsequent Ethereum block (its last 6 digits). This guaran-
tees full transparency and fairness of the lottery.

The revolutionary character of the SmartBillions Ethereum smart contract
lottery comes from:
1. The lottery is operated by a fully independent smart contract serving as a

self-amending regulatory guarantor. The whole process is held on
Ethereum blockchain.

2. The limited SMART Tokens sale crowdfunding goal is set for the highest
initial Jackpot of all online lotteries (180,000 ETH), with an unprecedented
win structure not limited to the Jackpot value.

3. Full transparency and security thanks to the smart contract’s elimination
of any third-party involvement in the lottery process and funds manage-
ment.

4. Lack of sign-up requirements providing full anonymity with instant Ticket
purchase capabilities.

5.No prior deposit requirements - direct Ticket payment from players’ digital
wallets.

6.Immediate, secure and anonymous payouts directly after each lottery
drawing.

7. Nearly instantaneous bet placement (under 1 minute), results (approxi-
mately 60 seconds) and win payout (instant).

2. LOTTERY MARKET OVERVIEW

The global offline and online gambling market categories continue to grow
year to year. While the first one reached out 359,3 billion USD in 2016, the on-
line market was estimated at 44 billion USD. However, the online gambling
category is experiencing faster growth (10%) than traditional offline gam-
bling and is expected to reach 60 billion USD annualy by 2020. The online
lottery market subcategory currently accounts for approximately 4 billion
USD annually and is expected to grow at a 10-12% per annum).

�

� � �www.smartbillions.com 6

http://www.smartbillions.com
http://www.smartbillions.com

According to the World Lottery Association (WLA), in 2016, sales of offline
draw-based lottery tickets accounted for 143.5 billion USD (approximately
30% of the global offline gambling market). On the other hand, data from
H2 Gambling Capital, a betting and gaming consultancy, shows that online
lottery ticket sales amounted to only 3.85 billion USD in the same period.
Lotteries accounted for 9% of the online gambling market, with remainder
made up of betting (49%) and online casinos (27%).

�

� � �www.smartbillions.com 7

Online gambling market

15%

27%

49%

9%

Lotteries Betting Casinos Other

Online and offline gambling

0

100

200

300

400

2015 2016 2017

47,444,036,9

367,8359,3353,5

online offline

(EST.)

(Bln USD)

http://www.smartbillions.com
http://www.smartbillions.com

A lack of transparency is the main factor slowing down online lotteries’
growth. None of the currently operating online lotteries are decentralized
and transparent. Their processes depend on third party involvement which is
not subject to any control mechanisms and creates a high risk of lottery op-
erators influencing draw results and prize payouts.

SmartBillions will bring full transparency to online lotteries and marks the
birth of a new kind of trust and quality in the market. With its innovative so-
lutions, SmartBillions overcomes all of the existing online chance-gaming
challenges. Furthermore, the global lottery market data does not limit
SmartBillions’ market potential, as it constitutes a new market category and
is dedicated to both blockchain professionals as well as the general public.

SmartBillions’ goal is to attain 10% of the online lottery market category
turnover within its first year of operations.

3. NEW LEVEL OF TRUST. THE SMART-
BILLIONS MISSION AND VISION

The launch of SmartBillions marks the birth of a lottery which provides a
new level of quality and trust. It is designed as a community-driven global
initiative supporting Ethereum and gameplay communities. It is a part of the
worldwide disruptive and democratizing blockchain movement. It is esti-
mated that by 2025, as much as 70% of all possible markets in the world will
rely on blockchain technology. The transparency and the trust attributed to
the smart contracts operating on the blockchains, derive from the fact that
all agreements are executed automatically and allow no third-party access
or administrator intervention.

Blockchain allows a fundamental global shift in decentralized re-interme-
diated economy. It answers the social need for a global reinvention of lottery
systems and their governance, which will lead to full transparency. The
world’s lotteries must either adapt to this new paradigm or get disrupted, as
full transparency is certainly the industry’s future. This shift is being dynami-
cally introduced to all branches of the economy through blockchain techno-
logy.
�

� � �www.smartbillions.com 8

http://www.smartbillions.com
http://www.smartbillions.com

SmartBillions’ mission is to provide a new, fully transparent economy to the
lottery world, bringing incontestable freedom and equal chances of winning
to all players around the world.

Self-regulated smart contract solution gives SmartBillions an unprecedented
chance to disrupt gaming category politics. The absence of internal and ex-
ternal governance, hidden fees, unclear rules and potential of deception will
become the industry standard.

SmartBillions’ vision is to become the first truly global, transparent and
anonymous lottery with unlimited Jackpot potential. SmartBillions, with its
internal and transparent management and no 3rd party involvement will
revolutionize and create a new standard for all lotteries and will become a
reference point for all future lottery projects. In short, we believe that Smart-
Billions will became the world’s biggest lottery.

4. SMARTBILLIONS KEY FEATURES AND
COMPETITIVE ADVANTAGES

The key features of the SmartBillions Ethereum lottery sum up to both its
uniqueness and fully transparent character. The most important defining
features are:

A. FULLY COMPREHENSIVE TRANSPARENCY
SmartBillions is a decentralized and self-managing smart contract lottery.

Contract balance and all transactions are public and transparent. Funds are
under smart contract administration and fund distribution rules are un-
changeable.

All lottery transactions are held on the Ethereum blockchain, all bets, results
and payouts are public, independent from any third-party involvement and
cannot be manipulated or influenced. The fund management scheme is
presented below.

�

� � �www.smartbillions.com 9

http://www.smartbillions.com
http://www.smartbillions.com

A1. FULLY COMPREHENSIVE TRANSPARENCY

The rules of the SmartBillions Ethereum smart contract lottery are un-
changeable. Players choose the predicted sequence of 6 numbers between
0 and 15 (hexadecimal Ethereum hash record) and set the lottery ticket val-
ue.
The draw result is the last 6 digits of the hash of the third ensuing Ethereum
block.
Digits in Ethereum block hash are written in the Hexadecimal format. The
table below presents simple conversion from hexadecimal to decimal num-
bers.

The Lottery Drawing consist of the following steps:

Hexadecimal 0 1 2 3 4 5 6 7 8 9 a b c d e f

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

�

� � �www.smartbillions.com 10

SMART
CONTRACT

PLAYERS

TOKEN HOLDERS

AFFILIATESADMIN

Marketing &
development

Hackathon
prize

Affiliate
payouts

Pr
iz

e
Pa

yo
ut

s
Cr

ow
ds

al
e

D
iv

id
en

ds
Ti

ck
et

 s
al

es

http://www.smartbillions.com
http://www.smartbillions.com

a. Player chooses 6 numbers (0-15) in specific order.
b. For example: 4, 15, 9, 5, 0, 13.
b. Player confirms lottery Ticket purchase transaction and waits for it to be

included in an Ethereum block.
c. The bet is accepted in block 4098562.
d. The bet result will come in the third future block (+3): 4098565.
e. Sample Block 4098565 hash: 0xa248b6b2504cdb483bd4aa392ab6c-

cd4f4249638a371686e2ddd9117ac2f3b0d
f. The draw result is the last 6 digits of block 4098565 hash, i.e. 2f3b0d.
g. The draw results are converted into the decimal format:
1st number: “2” = 2
2nd number: ”f” = 15
3rd number: “3” = 3
4th number: “b” = 11
5th number: “0” = 0
6th number: “d” = 13
h. The numbers chosen by the player were: 4, 15 ,9 ,5 ,13, 0.
a. The draw result is: 2, 15, 3, 11, 13, 0.
b. 3 numbers match: 15, 13 and 0.
c. Player receives payout.

Neither the administrator nor any other 3rd party can affect the lottery
process. Once the bet is placed, the smart contract automatically executes
the next steps.

B. HIGHLY ATTRACTIVE EXPECTED WINS

SmartBillions payouts are instant, direct, secure and anonymous. They are
many times higher than the ones offered by any previous lottery, as well as
those offered by all current offline and online competitors. The odds and ex-
pected wins are presented in the table below:

�

� � �www.smartbillions.com 11

http://www.smartbillions.com
http://www.smartbillions.com

SmartBillions lottery win odds and multiplier structure:

C. INVIOLABLE ANONYMITY
The systemic anonymity provided by SmartBillions protects the players and
secures their interests. All potentially threatening and risk-generating factors
have been eliminated from the lottery operating processes. Participating in
and placing bets on the SmartBillions lottery does not require prior registra-
tion or deposits. The only thing the players need is a secure Ethereum wallet
or Metamask wallet installed. Bet placing and lottery win payout processes
do not produce any emails or confirmations and don’t require any personal
information to be provided.

D. CONVENIENT FLEXIBILITY AND USER-FRIENDLY UX
Lottery participation by Ticket purchase is available to everyone.
To place a bet, a player may use the interface together with a Matamask wal-
let (a simple and user-friendly solution) or place a bet directly from their
Ethereum wallet.

HIT WIN	ODDS	1	TO: WIN	MULTIPLIER

2 out of 6 22 3

3 out of 6 249 25

4 out of 6 4,971 500

5 out of 6 184,414 20,000

6 out of 6 16,777,216 7,000,000

�

� � �www.smartbillions.com 12

http://www.smartbillions.com
http://www.smartbillions.com

E. INSTANT RESULTS AND PAYOUTS
Draw results appear approximately 60 seconds after the bet is placed (the
third future Ethereum block). The process of placing a bet and awaiting the
results does not take much more than a minute – an unprecedented
achievement in both online and offline lottery history. Win withdrawal is
possible right after the draw results are published, and the funds are imme-
diately transferred to the same Ethereum wallet the bet was placed from.

F. LOW TRANSACTION COST
Thanks to the unique smart contract architecture, the cost of each bet
placement is reduced to the minimum. The cost of GAS (transaction cost)
used to place the bet can be as low as 0.03 USD – significantly lower than in
any other similar Ethereum contract transaction.

G. FLEXIBLE TICKET VALUE
While the maximum bet value is set at 1 ETH, the Ticket value is not fixed
and players are free to choose the value of their bet between 0,001 and 1
ETH. The maximum value of all tickets in one draw is set at 5 ETH for security
reason.

H. ELIMINATION OF CHEATING OPPORTUNITIES
The maximum cap (total bet value) for each draw is limited to 5 ETH for se-
curity reasons. This feature forecloses the possibility of potential cheating by
miners.

I. FAVORABLE TICKET SALES FUNDS DISTRIBUTION
94-95% of funds from Ticket sales are transferred directly to the Jackpot.
When compared to the closest competitors, this is a far more favorable value
for the product’s growth and development. It guarantees the constant
growth of the Jackpot and makes the SmartBillions increasingly more at-
tractive for both players and SMART Token holders.

�

� � �www.smartbillions.com 13

http://www.smartbillions.com
http://www.smartbillions.com

* Depending on the performance

J. SMALL HOUSE EDGE
The house edge for the SmartBillions Ethereum-based lottery is set at
13.85%. Of that, 5% is allocated to the monthly dividend for limited SMART
Token holders and between 7,85% and 8,85% is transferred directly to the
Jackpot. Up to 1% goes to affiliates depending on their performance.
The house edge value is stated in the smart contract and it cannot be
changed by the Administrator and any other 3rd party.

———

The competitive advantages of the SmartBillions Ethereum lottery com-
pared to online and offline competitors:

�

� � �www.smartbillions.com 14

TICKET SALES

JACKPOT DIVIDENDS AFFILIATES

94-95% 5% 0-1%*

http://www.smartbillions.com
http://www.smartbillions.com

5. MULTICHANNEL PROMOTION
SCHEME

The SmartBillions marketing strategy and promotional plan is based on four
pillars:

�

� � �www.smartbillions.com 15

SMART BILLIONS TRUE FLIP POWERBALL

Max win
2 324 000 000

(2.34 billion)
USD*

518 549
(518.5 thousand)

USD**

52 800 000
(52.8 million)

USD***

Jackpot payout 7 000 000 x 223 260 x Volatile
(26 400 000 x **)

Numbers range Simply 0-15 Complex 1-49
and 1-26

Complex 1-69
and 1-26

Jackpot odds 1:16 777 216 1:49 578 984 1:292 201 338

Structure Decentralised Centralised Centralised

Jackpot
management Smart Contract Admin Operator

House edge 13,85% 21,28% >50 %

% of tickets sales
to jackpot 95% 60% 50%

Transaction cost 0.03 $ 0.35 $ Ticket purchase in
person

*1 ETH = 332 USD as for September 8 2017
 **As for September 08 2017 (https://trueflip.io)

*** As for September 04 2017 (http://www.powerball.com/)

http://www.smartbillions.com
https://trueflip.io
http://www.powerball.com/
http://www.smartbillions.com

a. An actively growing affiliate program, where 1% of the value of the Tickets
sold will be transferred to affiliates driving the lottery’s traffic. The constant
increase in lottery popularity will have a positive effect on the growth of
the value of the Tickets played. As a result, the referral program budget
will grow dynamically in both value and attractiveness.

b. Influencer engagement network initially built during the Token sales peri-
od. The SmartBillions influencer cooperation network will be further de-
veloped and used at later stages of the lottery’s growth.

c. Performance marketing tactics developed and continually evaluated for
the highest conversion ratios.

d. Informative and engaging publications in both blockchain and non-
blockchain media worldwide – highlighting SmartBillions’ role as the start
of a new era in lottery history and potential for becoming the largest lot-
tery in history.

The effectiveness of the marketing efforts will be driven by the ongoing
growth of Jackpots offered. The lottery will be marketed and popularized
not only within the blockchain community but throughout the general pub-
lic.

6. CROWDFUNDING MODEL AND
TOKENS

The SmartBillions limited SMART Token sales model will use the “Initial Coin
Offering” (ICO) process. SMART Token sales will last for approximately two
weeks. The crowdfund goal is set at 200 000 ETH. There is no minimal cap
set.

Its uniqueness and revolutionary character is based on the following charac-
teristics:
1. SmartBillions smart contract is finished and tested. The product is ready to

launch unlike other ICO where the product development hasn’t started
yet.

2. 90% of the raised funds will be transferred directly to the lottery Jackpot.
3. Crowdfunding backers will receive almost 80% of the Tokens.

�

� � �www.smartbillions.com 16

http://www.smartbillions.com
http://www.smartbillions.com

4. The first token sales with guaranteed downside protection for Investors
and Token redemption possibility. The latter means that backers will have
the unprecedented ability to redeem SMART Tokens anytime – with most
of their funds returned. This feature has never been offered in by any previ-
ous “ICOs” (initial coin offerings).

5.Monthly dividend payout directly from lottery Ticket sale revenues.
6.A ready to market product with full-feature operating ability, limiting

project risk and need for long-term project participation.
7. Risk-free smart contract product with full security proven in the hackathon

process (hackathon prize: 1500 ETH) provided by SmartBillions’ creators to
validate the system’s safety).

A. SMART TOKEN SALES FUNDS DISTRIBUTION
The crowdfunding goal (cap) for the limited Token (SMART) sales is set at
200,000 ETH. 90% of the raised sum will become the initial value of the
Jackpot. The remaining 10% will be allocated for platform development and
the lottery’s marketing budget to fuel the unceasing growth of the Jackpot
value.
Unlike other “ICOs”, most of the funds – 90 % will be kept within the contract
as the Jackpot funds, making the SmartBillions crowdfund highly attractive
for the investors.

�

� � �www.smartbillions.com 17

Funds distribution from
crowdfund (SMART Token

sales)

10%

90%

Jackpot Marketing

http://www.smartbillions.com
http://www.smartbillions.com

B. TOKEN DISTRIBUTION
Crowdfund backers will receive 79.37 % and development team will receive
20.63 % off all SMART Tokens created.
1 ETH = 1000 SMART Tokens.
For every 100 SMART Token created for crowdfunding backers, another 26
will be created for the development team (79.37% vs 20.63%). The goal is to
create 252 000 000 SMART Tokens. 200 000 000 of them allocated to the
ICO Backers, and 52 000 000 to the development team.

C. SMART TOKEN KEY FEATURES

SmartBillions Token (SMART Token) is a standard ERC20 Token.

a.Token redemption possibility.
Token redemption possibility is a truly revolutionary feature which has never
been offered before in the history of ICOs.
�

� � �www.smartbillions.com 18

SMART Token Distribution

20,63%

79,37%

Crowdfund Backers Development

SMART CONTRACT

ICO BACKERS

CROWDSALE CAMPAIGN

DEVELOPMENT TEAM

1 ETH1000
SMART

260 SMART

http://www.smartbillions.com
http://www.smartbillions.com

Any time following the end of the limited SMART Token sale, holders may
redeem their Tokens. The funds raised for the Jackpot during the SMART To-
kens sale will be used to cover the cost of their redemption.
This feature reduces investors’ risk to a minimum in the event that the lot-
tery’s performance falls below expectations or any other unexpected events
affect the lottery. Token holders will be able to withdraw their funds and
their potential loss will never exceed 28,57% of their initial investment. Hold-
ers redeeming their SMART Tokens, will receive exactly 71,43% of their value
in ETH based on the following calculation:

Token redemption is facilitated through the Disinvest function (please see
Appendix)

b. Token dividend payouts.
Token holders will receive a dividend every 16 384 Ethereum blocks (approx. 1
month apart). A fixed 5% of all lottery income is allocated to the dividend
payout. The payouts will be made directly from the smart contract balance
which is inaccessible to all parties. Ticket sale revenues as well as the smart
contract balance are public and cannot be affected by any third party. This
makes SmartBillions different from other ICOs with Dividend payout
promises where the payout value and the payout itself depends on the third-
party actions and can be easily manipulated. The following calculation
shows the value of the dividend for 1 SMART Token each month:

Dividend Payouts are facilitated through the payDividends function (please
see Appendix).

SMART Token Holders will be able to place an order for the dividend payout
directly from their Ethereum wallet.
�

� � �www.smartbillions.com 19

SMRT

SMRT

SMRT

http://www.smartbillions.com
http://www.smartbillions.com

SmartBillions estimated annual dividend Value:

c. Token exchangeability
SMART Tokens will be fully exchangeable and tradable on multiple markets.
The SmartBillions development team plans to list the SMART Tokens on
multiple online exchange markets within 14 days from the conclusion of the
initial token sales period.

D. UNIQUENESS OF THE SMARTBILLIONS CROWDFUND-
ING INVESTMENT
The table below compares SmartBillions Crowdfunding with other recent
lottery and gambling related ICOs:

ANNUAL TICKET
SALES USD

ANNUAL TICKET
SALES ETH*

ANNUAL
DIVIDEND USD

ANNUAL DIVI-
DEND ETH

YIELD FOR
TOKEN

HOLDERS

400,000,000 1,333,333 20,000,000 66,667 26.46%

500,000,000 1,666,667 25,000,000 83,333 33.07%

750,000,000 2,500,000 37,500,000 125,000 49.60%

*1 ETH = 300 USD as for Aug. 16 2017

�

� � �www.smartbillions.com 20

http://www.smartbillions.com
http://www.smartbillions.com

In comparison with its competitors, SmartBillions lottery is exhaustively
transparent and fair. Its key uniqueness qualities are:

Funds Storage: All funds raised during the crowdsale will be only stored
within the smart contract only - the contract’s balance is public and trans-
parent. Funds will be managed by a smart contract according to the rules
set out prior to the ICO start and which cannot be changed afterward.

SMART
 BILLIONS

BITDICE EDGELESS TRUE FLIP

Raised funds sto-
rage

Smart contract -
guaranteed se-
curity proven by

hackathon

Internal Bitdice
addresses - no

guaranteed secu-
rity

Internal Edge-
less address - no
guaranteed se-

curity

Internal True Flip
address - no gu-
aranteed securi-

ty

Token Allocation
Immediately

after receiving
funds

7 days after
crowd sales ends

Immediately
after receiving

funds

After the crowd-
sale ends

Dividend Value

Transparent and
public, calcula-

ted by smart
contract with no

3rd party invo-
lvement

Depending on
the Admin, Funds
from internal ad-
dress will be allo-
cated to the Divi-
dend payout ad-

dress

Depending on
the Admin,

Funds from in-
ternal address

will be allocated
to the Dividend
payout address

Depending on
the Admin,

Funds from in-
ternal address

will be allocated
to the Dividend
payout address

Dividend payout Managed by
smart contract

Initiated by Ad-
min

Initiated by Ad-
min

Initiated by Ad-
min

Funds allocated
to Jackpot/ ban-
kroll

90% lottery
Jackpot

40% house ban-
kroll

20% house ban-
kroll

32% lottery
Jackpot

Funds allocated
to development
team

10% 60% 80% 60%

ICO Backers’ do-
wnside protec-
tion

Token redemp-
tion possibility

No protection No protection No protection

�

� � �www.smartbillions.com 21

http://www.smartbillions.com
http://www.smartbillions.com

In the examined ICO models, funds are stored on multiple private addresses
managed by Admin with no transparency. Moreover, only SmartBillions con-
tract will be proven safe during the hackathon event which will take place
before ICO starts, there’s no guarantee that other projects funds are safe
while stored on private addresses.

Token Allocation: All the SMART Tokens will be automatically allocated by
smart contract to the crowdsale backers immediately after the reception of
the funds.

Dividend value and payout: All the SmartBillions lottery transactions are
public and held on Ethereum blockchain. The dividend value allocated to
Token holders represents 5% of all Ticket sales revenue in the last dividend
period. The Token sales revenue is public and the dividend value is automati-
cally calculated by the smart contract without any third-party involvement.
The potential competitors’ dividend value depends on their product perfor-
mance and represents a share in the product profits. Those profits are not
public, as they operate on the off-ledger solutions.
Admin may easily manipulate the dividend value and set its value at his own
choice. Dividend payout also depends on the Admin only and Admin may
decide not to pay Dividend at all.

The use of funds: The lion’s share of the funds (90%) raised during the
SmartBillions crowdfunding stage will be used for the lottery’s Jackpot.
Competitive ICOs assign just 20 to 40% of the raised funds to the house roll.
Furthermore, only a maximum of 10% of the funds raised will be available to
the development team for marketing and development processes, com-
pared to a 60 to 80% figure in the other benchmarked gambling ICOs .

Downside protection: Unlike all other token offerings, the SmartBillions ini-
tial SMART Tokens crowdfunding sale provides the investors with an un-
precedented downside protection thanks to the one-of-a kind SMART To-
kens redemption possibility. If unforeseen circumstances cause the lottery’s
performance to fall below expectations or any other unexpected incident
occurs, SMART Token holders may redeem their Tokens and receive most of
their funds back.

�

� � �www.smartbillions.com 22

http://www.smartbillions.com
http://www.smartbillions.com

Other comparable projects may be shut down at any time and all funds are
under 3rd party administration with no Investor control. Under that arrange-
ment, worst case scenarios leave Investors with only worthless Tokens.

7. THE SMARTBILLIONS JACKPOT

The first SmartBillions Jackpot is derived from the proceeds of the SMART
token sales. 90% of the funds raised will constitute the initial SmartBillions
Jackpot.

 a. Jackpot value
Between 94% and 95% of Ticket sales revenue will go toward the Jackpot.
Another 5% is designated for SMART Token holders’ dividend payments and
the remaining amount (up to 1%) will go toward compensating the lottery’s
affiliates.

This distribution of Ticket Sales revenues guarantees the Jackpot's continued
growth and ensures that the SmartBillions lottery will constantly and dy-
namically grow in popularity.

�

� � �www.smartbillions.com 23

TICKET SALES

JACKPOT DIVIDENDS AFFILIATES

94-95% 5% 0-1%*

* Depending on the performance

http://www.smartbillions.com
http://www.smartbillions.com

b. Jackpot Management
The Jackpot is managed by a smart contract with publicly known and unch-
angeable rules.
Admin will be allowed to withdraw only 0.25 % of the total Jackpot Value
per week, for marketing expenses used to drive increased awareness, inter-
est, participation and Jackpot value.
However, this is possible only if the overall Jackpot value is larger than the
combined liabilities of potential redemptions of all SMART Tokens in circula-
tion as well as the current unpaid lottery winnings. Admin’s withdraws of
funds cannot harm the interests of the Investors and players.

c. Wins payouts
If a particular player’s win makes up more than 50% of the Jackpot value,
that player can instantly withdraw only 50% of the Jackpot. After that, the
player will be able to cash out up to 50% of the Jackpot value every period
(approx. 1 month) until the withdrawal of the total value of the win. This pro-
vision ensures continued high Jackpot values, driving the lottery’s appeal to
the gaming clients.

The walletBalanceOf Function will inform about the lottery balance for the
specific address (please see Appendix).

The walletBlockOff Function will inform about the soonest possible with-
drawal date from the Jackpot for the specific address (please see Appendix).

8. SYSTEMIC SECURITY
The SmartBillions lottery smart contract construction secures both the play-
ers' interests and the system’s stability, bringing a high degree of trust to the
online lottery world.

a.Hackathon
Exactly 14 days before the initial SMART Token sales offering, the SmartBil-
lions development team will allocate 1500 ETH to the Jackpot as a reward to
anyone capable of hacking the smart contract and withdrawing the funds.
This own-risk solution will validate the contract’s security.

�

� � �www.smartbillions.com 24

http://www.smartbillions.com
http://www.smartbillions.com

b. Security audit
The SmartBillions Ethereum contract was subjected to a third-party security
audit. The contract was published online before the initial SMART Token
sales offering for testing. Additionally, the 1500 ETH prize available for hack-
ing the smart contract is the best guarantee of the contract architecture’s
systemic security.

c. Lottery Closing
In the event of unexpected circumstances (such as Ethereum protocol
changes) which could affect the lottery and endanger the funds stored in
the Jackpot, the contract allows Admin to withdraw surplus funds from the
Jackpot remaining after settling all outstanding smart contract obligations,
such as:
- Redemption of all remaining SMART Tokens, and
- Payout of all outstanding lottery prizes.
Admin will be allowed to withdraw the surplus from the Jackpot only if
more than 50% of all SMART Tokens are redeemed. In this situation, it will
be clear that lottery security might be vulnerable and that its funds must be
secured. As a consequence, all the surplus funds will be allocated to the
Jackpot of a new, comprehensively secured and updated lottery and the
players and all relevant parties will be notified immediately and continuous-
ly updated during the process.

There are no other circumstances under which funds from the Jackpot
can be withdrawn by any party.

9. PROJECT TIMELINE

The development phase of the SmartBillions Ethereum-based smart con-
tract lottery has now ended. The contract was tested and the result of the
third-party security audit was positive. The development team’s efforts will
now be directed to marketing, based on a strategy of identifying SmartBil-
lions as the world’s largest and best-known lottery with unlimited growth
potential.

The team estimates that SMART Tokens will be listed on multiple exchanges
within 14 days after the initial SMART Token sales offering ends.
�

� � �www.smartbillions.com 25

http://www.smartbillions.com
http://www.smartbillions.com

In Q1 2018 The development team will launch a smart contract based ex-
change and SMART Tokens will be first to be listed.

The SmartBillions team is working on a mobile Ethereum wallet designed to
simplify lottery participation for mobile users. The release of the mobile wal-
let is planned for Q1 2018.

The development team will continue working on smart contract based pro-
ducts and will introduce more functionalities for SMART tokens which will
drive the price up.

In the near future the SmartBillions development team plans for the SMART
Token to become a universal global online gaming currency that will run
across various gaming platforms.

�

� � �www.smartbillions.com 26

1.06

16.10 13.11

Contract
development
and tests Lottery launch

First
dividend
payouts

SmartBillions
smart contract

ICO Token listing
on exchanges

30.10 30.11

Q1 2018

Mobile
wallet

Hackathon

02.10

21.08

http://www.smartbillions.com
http://www.smartbillions.com

10. APPENDIX:
The SmartBillions smart contract.

1. pragma solidity ^0.4.17;
2.
3. library SafeMath {
4. function sub(uint a, uint b) internal pure returns (uint) {
5. assert(b <= a);
6. return a - b;
7. }
8. function add(uint a, uint b) internal pure returns (uint) {
9. uint c = a + b;
10. assert(c >= a);
11. return c;
12. }
13.}
14.
15.contract ERC20Basic {
16. uint public totalSupply;
17. address public owner; //owner
18. address public animator; //animator
19. function balanceOf(address who) constant public returns (uint);
20. function transfer(address to, uint value) public;
21. event Transfer(address indexed from, address indexed to, uint value);
22. function commitDividend(address who) internal; // pays remaining dividend
23.}
24.
25.contract ERC20 is ERC20Basic {
26. function allowance(address owner, address spender) constant public returns (uint);
27. function transferFrom(address from, address to, uint value) public;
28. function approve(address spender, uint value) public;
29. event Approval(address indexed owner, address indexed spender, uint value);
30.}
31.
32.contract BasicToken is ERC20Basic {
33. using SafeMath for uint;
34. mapping(address => uint) balances;
35.
36. modifier onlyPayloadSize(uint size) {
37. assert(msg.data.length >= size + 4);
38. _;
39. }
�

� � �www.smartbillions.com 27

http://www.smartbillions.com
http://www.smartbillions.com

40. /**
41. * @dev transfer token for a specified address
42. * @param _to The address to transfer to.
43. * @param _value The amount to be transferred.
44. */
45. function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) {
46. commitDividend(msg.sender);
47. balances[msg.sender] = balances[msg.sender].sub(_value);
48. if(_to == address(this)) {
49. commitDividend(owner);
50. balances[owner] = balances[owner].add(_value);
51. Transfer(msg.sender, owner, _value);
52. }
53. else {
54. commitDividend(_to);
55. balances[_to] = balances[_to].add(_value);
56. Transfer(msg.sender, _to, _value);
57. }
58. }
59. /**
60. * @dev Gets the balance of the specified address.
61. * @param _owner The address to query the the balance of.
62. * @return An uint representing the amount owned by the passed address.
63. */
64. function balanceOf(address _owner) constant public returns (uint balance) {
65. return balances[_owner];
66. }
67.}
68.
69.contract StandardToken is BasicToken, ERC20 {
70. mapping (address => mapping (address => uint)) allowed;
71.
72. /**
73. * @dev Transfer tokens from one address to another
74. * @param _from address The address which you want to send tokens from
75. * @param _to address The address which you want to transfer to
76. * @param _value uint the amount of tokens to be transfered
77. */
78. function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3

* 32) {
79. var _allowance = allowed[_from][msg.sender];
80. commitDividend(_from);
81. commitDividend(_to);
82. allowed[_from][msg.sender] = _allowance.sub(_value);

�

� � �www.smartbillions.com 28

http://www.smartbillions.com
http://www.smartbillions.com

83. balances[_from] = balances[_from].sub(_value);
84. balances[_to] = balances[_to].add(_value);
85. Transfer(_from, _to, _value);
86. }
87. /**
88. * @dev Aprove the passed address to spend the specified amount of tokens on beahlf

of msg.sender.
89. * @param _spender The address which will spend the funds.
90. * @param _value The amount of tokens to be spent.
91. */
92. function approve(address _spender, uint _value) public {
93. // https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
94. assert(!((_value != 0) && (allowed[msg.sender][_spender] != 0)));
95. allowed[msg.sender][_spender] = _value;
96. Approval(msg.sender, _spender, _value);
97. }
98. /**
99. * @dev Function to check the amount of tokens than an owner allowed to a spender.
100. * @param _owner address The address which owns the funds.
101. * @param _spender address The address which will spend the funds.
102. * @return A uint specifing the amount of tokens still avaible for the spender.
103. */
104. function allowance(address _owner, address _spender) constant public returns (uint

remaining) {
105. return allowed[_owner][_spender];
106. }
107.}
108.
109./**
110. * @title SmartBillions contract
111. */
112.contract SmartBillions is StandardToken {
113.
114. // metadata
115. string public constant name = "SmartBillions Token";
116. string public constant symbol = "Smart"; // changed due to conflicts
117. uint public constant decimals = 0;
118.
119. // contract state
120. struct Wallet {
121. uint208 balance; // current balance of user
122. uint16 lastDividendPeriod; // last processed dividend period of user's tokens
123. uint32 nextWithdrawTime; // next withdrawal possible after this timestamp
124. }

�

� � �www.smartbillions.com 29

http://www.smartbillions.com
http://www.smartbillions.com

125. mapping (address => Wallet) wallets;
126. struct Bet {
127. uint192 value; // bet size
128. uint32 betHash; // selected numbers
129. uint32 blockNum; // blocknumber when lottery runs
130. }
131. mapping (address => Bet) bets;
132.
133. uint public walletBalance = 0; // sum of funds in wallets
134.
135. // investment parameters
136. uint public investStart = 1; // investment start block, 0: closed, 1: preparation
137. uint public investBalance = 0; // funding from investors
138. uint public investBalanceGot = 0; // funding collected
139. uint public investBalanceMax = 200000 ether; // maximum funding
140. uint public dividendPeriod = 1;
141. uint[] public dividends; // dividens collected per period, growing array
142.
143. // betting parameters
144. uint public maxWin = 0; // maximum prize won
145. uint public hashFirst = 0; // start time of building hashes database
146. uint public hashLast = 0; // last saved block of hashes
147. uint public hashNext = 0; // next available bet block.number
148. uint public hashBetSum = 0; // used bet volume of next block
149. uint public hashBetMax = 5 ether; // maximum bet size per block
150. uint[] public hashes; // space for storing lottery results
151.
152. // constants
153. uint public constant hashesSize = 16384 ; // 30 days of blocks
154. uint public coldStoreLast = 0 ; // timestamp of last cold store transfer
155.
156. // events
157. event LogBet(address indexed player, uint bethash, uint blocknumber, uint betsize);
158. event LogLoss(address indexed player, uint bethash, uint hash);
159. event LogWin(address indexed player, uint bethash, uint hash, uint prize);
160. event LogInvestment(address indexed investor, address indexed partner, uint

amount);
161. event LogRecordWin(address indexed player, uint amount);
162. event LogLate(address indexed player,uint playerBlockNumber,uint currentBlock-

Number);
163. event LogDividend(address indexed investor, uint amount, uint period);
164.
165. modifier onlyOwner() {
166. assert(msg.sender == owner);

�

� � �www.smartbillions.com 30

http://www.smartbillions.com
http://www.smartbillions.com

167. _;
168. }
169.
170. modifier onlyAnimator() {
171. assert(msg.sender == animator);
172. _;
173. }
174.
175. // constructor
176. function SmartBillions() public {
177. owner = msg.sender;
178. animator = msg.sender;
179. wallets[owner].lastDividendPeriod = uint16(dividendPeriod);
180. dividends.push(0); // not used
181. dividends.push(0); // current dividend
182. }
183.
184./* getters */
185.
186. /**
187. * @dev Show length of allocated swap space
188. */
189. function hashesLength() constant external returns (uint) {
190. return uint(hashes.length);
191. }
192.
193. /**
194. * @dev Show balance of wallet
195. * @param _owner The address of the account.
196. */
197. function walletBalanceOf(address _owner) constant external returns (uint) {
198. return uint(wallets[_owner].balance);
199. }
200.
201. /**
202. * @dev Show last dividend period processed
203. * @param _owner The address of the account.
204. */
205. function walletPeriodOf(address _owner) constant external returns (uint) {
206. return uint(wallets[_owner].lastDividendPeriod);
207. }
208.
209. /**
210. * @dev Show block number when withdraw can continue

�

� � �www.smartbillions.com 31

http://www.smartbillions.com
http://www.smartbillions.com

211. * @param _owner The address of the account.
212. */
213. function walletTimeOf(address _owner) constant external returns (uint) {
214. return uint(wallets[_owner].nextWithdrawTime);
215. }
216.
217. /**
218. * @dev Show bet size.
219. * @param _owner The address of the player.
220. */
221. function betValueOf(address _owner) constant external returns (uint) {
222. return uint(bets[_owner].value);
223. }
224.
225. /**
226. * @dev Show block number of lottery run for the bet.
227. * @param _owner The address of the player.
228. */
229. function betHashOf(address _owner) constant external returns (uint) {
230. return uint(bets[_owner].betHash);
231. }
232.
233. /**
234. * @dev Show block number of lottery run for the bet.
235. * @param _owner The address of the player.
236. */
237. function betBlockNumberOf(address _owner) constant external returns (uint) {
238. return uint(bets[_owner].blockNum);
239. }
240.
241. /**
242. * @dev Print number of block till next expected dividend payment
243. */
244. function dividendsBlocks() constant external returns (uint) {
245. if(investStart > 0) {
246. return(0);
247. }
248. uint period = (block.number - hashFirst) / (10 * hashesSize);
249. if(period > dividendPeriod) {
250. return(0);
251. }
252. return((10 * hashesSize) - ((block.number - hashFirst) % (10 * hashesSize)));
253. }
254.

�

� � �www.smartbillions.com 32

http://www.smartbillions.com
http://www.smartbillions.com

255./* administrative functions */
256.
257. /**
258. * @dev Change owner.
259. * @param _who The address of new owner.
260. */
261. function changeOwner(address _who) external onlyOwner {
262. assert(_who != address(0));
263. commitDividend(msg.sender);
264. commitDividend(_who);
265. owner = _who;
266. }
267.
268. /**
269. * @dev Change animator.
270. * @param _who The address of new animator.
271. */
272. function changeAnimator(address _who) external onlyAnimator {
273. assert(_who != address(0));
274. commitDividend(msg.sender);
275. commitDividend(_who);
276. animator = _who;
277. }
278.
279. /**
280. * @dev Set ICO Start block.
281. * @param _when The block number of the ICO.
282. */
283. function setInvestStart(uint _when) external onlyOwner {
284. require(investStart == 1 && hashFirst > 0 && block.number < _when);
285. investStart = _when;
286. }
287.
288. /**
289. * @dev Set maximum bet size per block
290. * @param _maxsum The maximum bet size in wei.
291. */
292. function setBetMax(uint _maxsum) external onlyOwner {
293. hashBetMax = _maxsum;
294. }
295.
296. /**
297. * @dev Reset bet size accounting, to increase bet volume above safe limits
298. */

�

� � �www.smartbillions.com 33

http://www.smartbillions.com
http://www.smartbillions.com

299. function resetBet() external onlyOwner {
300. hashNext = block.number + 3;
301. hashBetSum = 0;
302. }
303.
304. /**
305. * @dev Move funds to cold storage
306. * @dev investBalance and walletBalance is protected from withdraw by owner
307. * @dev if funding is > 50% admin can withdraw only 0.25% of balance weekly
308. * @param _amount The amount of wei to move to cold storage
309. */
310. function coldStore(uint _amount) external onlyOwner {
311. houseKeeping();
312. require(_amount > 0 && this.balance >= (investBalance * 9 / 10) + walletBalance +

_amount);
313. if(investBalance >= investBalanceGot / 2){ // additional jackpot protection
314. require((_amount <= this.balance / 400) && coldStoreLast + 60 * 60 * 24 * 7 <= block-

.timestamp);
315. }
316. msg.sender.transfer(_amount);
317. coldStoreLast = block.timestamp;
318. }
319.
320. /**
321. * @dev Move funds to contract jackpot
322. */
323. function hotStore() payable external {
324. walletBalance += msg.value;
325. wallets[msg.sender].balance += uint208(msg.value);
326. houseKeeping();
327. }
328.
329./* housekeeping functions */
330.
331. /**
332. * @dev Update accounting
333. */
334. function houseKeeping() public {
335. if(investStart > 1 && block.number >= investStart + (hashesSize * 5)){ // ca. 14 days
336. investStart = 0; // start dividend payments
337. }
338. else {
339. if(hashFirst > 0){
340. uint period = (block.number - hashFirst) / (10 * hashesSize);

�

� � �www.smartbillions.com 34

http://www.smartbillions.com
http://www.smartbillions.com

341. if(period > dividends.length - 2) {
342. dividends.push(0);
343. }
344. if(period > dividendPeriod && investStart == 0 && dividendPeriod < dividend-

s.length - 1) {
345. dividendPeriod++;
346. }
347. }
348. }
349. }
350.
351./* payments */
352.
353. /**
354. * @dev Pay balance from wallet
355. */
356. function payWallet() public {
357. if(wallets[msg.sender].balance > 0 && wallets[msg.sender].nextWithdrawTime <=

block.timestamp){
358. uint balance = wallets[msg.sender].balance;
359. wallets[msg.sender].balance = 0;
360. walletBalance -= balance;
361. pay(balance);
362. }
363. }
364.
365. function pay(uint _amount) private {
366. uint maxpay = this.balance / 2;
367. if(maxpay >= _amount) {
368. msg.sender.transfer(_amount);
369. if(_amount > 1 finney) {
370. houseKeeping();
371. }
372. }
373. else {
374. uint keepbalance = _amount - maxpay;
375. walletBalance += keepbalance;
376. wallets[msg.sender].balance += uint208(keepbalance);
377. wallets[msg.sender].nextWithdrawTime = uint32(block.timestamp + 60 * 60 * 24 *

30); // wait 1 month for more funds
378. msg.sender.transfer(maxpay);
379. }
380. }
381.

�

� � �www.smartbillions.com 35

http://www.smartbillions.com
http://www.smartbillions.com

382./* investment functions */
383.
384. /**
385. * @dev Buy tokens
386. */
387. function investDirect() payable external {
388. invest(owner);
389. }
390.
391. /**
392. * @dev Buy tokens with affiliate partner
393. * @param _partner Affiliate partner
394. */
395. function invest(address _partner) payable public {
396. //require(fromUSA()==false); // fromUSA() not yet implemented :-(
397. require(investStart > 1 && block.number < investStart + (hashesSize * 5) && investBal-

ance < investBalanceMax);
398. uint investing = msg.value;
399. if(investing > investBalanceMax - investBalance) {
400. investing = investBalanceMax - investBalance;
401. investBalance = investBalanceMax;
402. investBalanceGot = investBalanceMax;
403. investStart = 0; // close investment round
404. msg.sender.transfer(msg.value.sub(investing)); // send back funds immediately
405. }
406. else{
407. investBalance += investing;
408. investBalanceGot += investing;
409. }
410. if(_partner == address(0) || _partner == owner){
411. walletBalance += investing / 10;
412. wallets[owner].balance += uint208(investing / 10);} // 10% for marketing if no affili-

ates
413. else{
414. walletBalance += (investing * 5 / 100) * 2;
415. wallets[owner].balance += uint208(investing * 5 / 100); // 5% initial marketing funds
416. wallets[_partner].balance += uint208(investing * 5 / 100);} // 5% for affiliates
417. wallets[msg.sender].lastDividendPeriod = uint16(dividendPeriod); // assert(dividend-

Period == 1);
418. uint senderBalance = investing / 10**15;
419. uint ownerBalance = investing * 16 / 10**17 ;
420. uint animatorBalance = investing * 10 / 10**17 ;
421. balances[msg.sender] += senderBalance;
422. balances[owner] += ownerBalance ; // 13% of shares go to developers

�

� � �www.smartbillions.com 36

http://www.smartbillions.com
http://www.smartbillions.com

423. balances[animator] += animatorBalance ; // 8% of shares go to animator
424. totalSupply += senderBalance + ownerBalance + animatorBalance;
425. Transfer(address(0),msg.sender,senderBalance); // for etherscan
426. Transfer(address(0),owner,ownerBalance); // for etherscan
427. Transfer(address(0),animator,animatorBalance); // for etherscan
428. LogInvestment(msg.sender,_partner,investing);
429. }
430.
431. /**
432. * @dev Delete all tokens owned by sender and return unpaid dividends and 90% of

initial investment
433. */
434. function disinvest() external {
435. require(investStart == 0);
436. commitDividend(msg.sender);
437. uint initialInvestment = balances[msg.sender] * 10**15;
438. Transfer(msg.sender,address(0),balances[msg.sender]); // for etherscan
439. delete balances[msg.sender]; // totalSupply stays the same, investBalance is re-

duced
440. investBalance -= initialInvestment;
441. wallets[msg.sender].balance += uint208(initialInvestment * 9 / 10);
442. payWallet();
443. }
444.
445. /**
446. * @dev Pay unpaid dividends
447. */
448. function payDividends() external {
449. require(investStart == 0);
450. commitDividend(msg.sender);
451. payWallet();
452. }
453.
454. /**
455. * @dev Commit remaining dividends before transfer of tokens
456. */
457. function commitDividend(address _who) internal {
458. uint last = wallets[_who].lastDividendPeriod;
459. if((balances[_who]==0) || (last==0)){
460. wallets[_who].lastDividendPeriod=uint16(dividendPeriod);
461. return;
462. }
463. if(last==dividendPeriod) {
464. return;

�

� � �www.smartbillions.com 37

http://www.smartbillions.com
http://www.smartbillions.com

465. }
466. uint share = balances[_who] * 0xffffffff / totalSupply;
467. uint balance = 0;
468. for(;last<dividendPeriod;last++) {
469. balance += share * dividends[last];
470. }
471. balance = (balance / 0xffffffff);
472. walletBalance += balance;
473. wallets[_who].balance += uint208(balance);
474. wallets[_who].lastDividendPeriod = uint16(last);
475. LogDividend(_who,balance,last);
476. }
477.
478./* lottery functions */
479.
480. function betPrize(Bet _player, uint24 _hash) constant private returns (uint) { // house

fee 13.85%
481. uint24 bethash = uint24(_player.betHash);
482. uint24 hit = bethash ^ _hash;
483. uint24 matches =
484. ((hit & 0xF) == 0 ? 1 : 0) +
485. ((hit & 0xF0) == 0 ? 1 : 0) +
486. ((hit & 0xF00) == 0 ? 1 : 0) +
487. ((hit & 0xF000) == 0 ? 1 : 0) +
488. ((hit & 0xF0000) == 0 ? 1 : 0) +
489. ((hit & 0xF00000) == 0 ? 1 : 0);
490. if(matches == 6){
491. return(uint(_player.value) * 7000000);
492. }
493. if(matches == 5){
494. return(uint(_player.value) * 20000);
495. }
496. if(matches == 4){
497. return(uint(_player.value) * 500);
498. }
499. if(matches == 3){
500. return(uint(_player.value) * 25);
501. }
502. if(matches == 2){
503. return(uint(_player.value) * 3);
504. }
505. return(0);
506. }
507.

�

� � �www.smartbillions.com 38

http://www.smartbillions.com
http://www.smartbillions.com

508. /**
509. * @dev Check if won in lottery
510. */
511. function betOf(address _who) constant external returns (uint) {
512. Bet memory player = bets[_who];
513. if((player.value==0) ||
514. (player.blockNum<=1) ||
515. (block.number<player.blockNum) ||
516. (block.number>=player.blockNum + (10 * hashesSize))){
517. return(0);
518. }
519. if(block.number<player.blockNum+256){
520. return(betPrize(player,uint24(block.blockhash(player.blockNum))));
521. }
522. if(hashFirst>0){
523. uint32 hash = getHash(player.blockNum);
524. if(hash == 0x1000000) { // load hash failed :-(, return funds
525. return(uint(player.value));
526. }
527. else{
528. return(betPrize(player,uint24(hash)));
529. }
530. }
531. return(0);
532. }
533.
534. /**
535. * @dev Check if won in lottery
536. */
537. function won() public {
538. Bet memory player = bets[msg.sender];
539. if(player.blockNum==0){ // create a new player
540. bets[msg.sender] = Bet({value: 0, betHash: 0, blockNum: 1});
541. return;
542. }
543. if((player.value==0) || (player.blockNum==1)){
544. payWallet();
545. return;
546. }
547. require(block.number>player.blockNum); // if there is an active bet, throw()
548. if(player.blockNum + (10 * hashesSize) <= block.number){ // last bet too long ago,

lost !
549. LogLate(msg.sender,player.blockNum,block.number);
550. bets[msg.sender] = Bet({value: 0, betHash: 0, blockNum: 1});

�

� � �www.smartbillions.com 39

http://www.smartbillions.com
http://www.smartbillions.com

551. return;
552. }
553. uint prize = 0;
554. uint32 hash = 0;
555. if(block.number<player.blockNum+256){
556. hash = uint24(block.blockhash(player.blockNum));
557. prize = betPrize(player,uint24(hash));
558. }
559. else {
560. if(hashFirst>0){ // lottery is open even before swap space (hashes) is ready, but

player must collect results within 256 blocks after run
561. hash = getHash(player.blockNum);
562. if(hash == 0x1000000) { // load hash failed :-(
563. //prize = uint(player.value); no refunds anymore
564. LogLate(msg.sender,player.blockNum,block.number);
565. bets[msg.sender] = Bet({value: 0, betHash: 0, blockNum: 1});
566. return();
567. }
568. else{
569. prize = betPrize(player,uint24(hash));
570. }
571. }
572. else{
573. LogLate(msg.sender,player.blockNum,block.number);
574. bets[msg.sender] = Bet({value: 0, betHash: 0, blockNum: 1});
575. return();
576. }
577. }
578. bets[msg.sender] = Bet({value: 0, betHash: 0, blockNum: 1});
579. if(prize>0) {
580. LogWin(msg.sender,uint(player.betHash),uint(hash),prize);
581. if(prize > maxWin){
582. maxWin = prize;
583. LogRecordWin(msg.sender,prize);
584. }
585. pay(prize);
586. }
587. else{
588. LogLoss(msg.sender,uint(player.betHash),uint(hash));
589. }
590. }
591.
592. /**
593. * @dev Send ether to buy tokens during ICO

�

� � �www.smartbillions.com 40

http://www.smartbillions.com
http://www.smartbillions.com

594. * @dev or send less than 1 ether to contract to play
595. * @dev or send 0 to collect prize
596. */
597. function () payable external {
598. if(msg.value > 0){
599. if(investStart>1){ // during ICO payment to the contract is treated as investment
600. invest(owner);
601. }
602. else{ // if not ICO running payment to contract is treated as play
603. play();
604. }
605. return;
606. }
607. //check for dividends and other assets
608. if(investStart == 0 && balances[msg.sender]>0){
609. commitDividend(msg.sender);}
610. won(); // will run payWallet() if nothing else available
611. }
612.
613. /**
614. * @dev Play in lottery
615. */
616. function play() payable public returns (uint) {
617. return playSystem(uint(keccak256(msg.sender,block.number)), address(0));
618. }
619.
620. /**
621. * @dev Play in lottery with random numbers
622. * @param _partner Affiliate partner
623. */
624. function playRandom(address _partner) payable public returns (uint) {
625. return playSystem(uint(keccak256(msg.sender,block.number)), _partner);
626. }
627.
628. /**
629. * @dev Play in lottery with own numbers
630. * @param _partner Affiliate partner
631. */
632. function playSystem(uint _hash, address _partner) payable public returns (uint) {
633. won(); // check if player did not win
634. uint24 bethash = uint24(_hash);
635. require(msg.value <= 1 ether && msg.value < hashBetMax);
636. if(msg.value > 0){
637. if(investStart==0) { // dividends only after investment finished

�

� � �www.smartbillions.com 41

http://www.smartbillions.com
http://www.smartbillions.com

638. dividends[dividendPeriod] += msg.value / 20; // 5% dividend
639. }
640. if(_partner != address(0)) {
641. uint fee = msg.value / 100;
642. walletBalance += fee;
643. wallets[_partner].balance += uint208(fee); // 1% for affiliates
644. }
645. if(hashNext < block.number + 3) {
646. hashNext = block.number + 3;
647. hashBetSum = msg.value;
648. }
649. else{
650. if(hashBetSum > hashBetMax) {
651. hashNext++;
652. hashBetSum = msg.value;
653. }
654. else{
655. hashBetSum += msg.value;
656. }
657. }
658. bets[msg.sender] = Bet({value: uint192(msg.value), betHash: uint32(bethash),

blockNum: uint32(hashNext)});
659. LogBet(msg.sender,uint(bethash),hashNext,msg.value);
660. }
661. putHashes(25); // players help collecing data, now much more than in last contract
662. return(hashNext);
663. }
664.
665./* database functions */
666.
667. /**
668. * @dev Create hash data swap space
669. * @param _sadd Number of hashes to add (<=256)
670. */
671. function addHashes(uint _sadd) public returns (uint) {
672. require(hashFirst == 0 && _sadd > 0 && _sadd <= hashesSize);
673. uint n = hashes.length;
674. if(n + _sadd > hashesSize){
675. hashes.length = hashesSize;
676. }
677. else{
678. hashes.length += _sadd;
679. }
680. for(;n<hashes.length;n++){ // make sure to burn gas

�

� � �www.smartbillions.com 42

http://www.smartbillions.com
http://www.smartbillions.com

681. hashes[n] =
0xFF;

682. }
683. if(hashes.length>=hashesSize) { // assume block.number > 10
684. hashFirst = block.number - (block.number % 10);
685. hashLast = hashFirst;
686. }
687. return(hashes.length);
688. }
689.
690. /**
691. * @dev Create hash data swap space, add 128 hashes
692. */
693. function addHashes128() external returns (uint) {
694. return(addHashes(128));
695. }
696.
697. function calcHashes(uint32 _lastb, uint32 _delta) constant private returns (uint) {
698. // assert(!(_lastb % 10)); this is required
699. return((uint(block.blockhash(_lastb)) & 0xFFFFFF)
700. | ((uint(block.blockhash(_lastb+1)) & 0xFFFFFF) << 24)
701. | ((uint(block.blockhash(_lastb+2)) & 0xFFFFFF) << 48)
702. | ((uint(block.blockhash(_lastb+3)) & 0xFFFFFF) << 72)
703. | ((uint(block.blockhash(_lastb+4)) & 0xFFFFFF) << 96)
704. | ((uint(block.blockhash(_lastb+5)) & 0xFFFFFF) << 120)
705. | ((uint(block.blockhash(_lastb+6)) & 0xFFFFFF) << 144)
706. | ((uint(block.blockhash(_lastb+7)) & 0xFFFFFF) << 168)
707. | ((uint(block.blockhash(_lastb+8)) & 0xFFFFFF) << 192)
708. | ((uint(block.blockhash(_lastb+9)) & 0xFFFFFF) << 216)
709. | ((uint(_delta) / hashesSize) << 240));
710. }
711.
712. function getHash(uint _block) constant private returns (uint32) {
713. uint delta = (_block - hashFirst) / 10;
714. uint hash = hashes[delta % hashesSize];
715. if(delta / hashesSize != hash >> 240) {
716. return(0x1000000); // load failed, incorrect data in hashes
717. }
718. uint slotp = (_block - hashFirst) % 10;
719. return(uint32((hash >> (24 * slotp)) & 0xFFFFFF));
720. }
721.
722. /**
723. * @dev Fill hash data

�

� � �www.smartbillions.com 43

http://www.smartbillions.com
http://www.smartbillions.com

724. */
725. function putHash() public returns (bool) {
726. uint lastb = hashLast;
727. if(lastb == 0 || block.number <= lastb + 10) {
728. return(false);
729. }
730. if(lastb < block.number - 245) {
731. uint num = block.number - 245;
732. lastb = num - (num % 10);
733. }
734. uint delta = (lastb - hashFirst) / 10;
735. hashes[delta % hashesSize] = calcHashes(uint32(lastb),uint32(delta));
736. hashLast = lastb + 10;
737. return(true);
738. }
739.
740. /**
741. * @dev Fill hash data many times
742. * @param _num Number of iterations
743. */
744. function putHashes(uint _num) public {
745. uint n=0;
746. for(;n<_num;n++){
747. if(!putHash()){
748. return;
749. }
750. }
751. }
752.
753.}

�

� � �www.smartbillions.com 44

http://www.smartbillions.com
http://www.smartbillions.com

�

� � �www.smartbillions.com 45

http://www.smartbillions.com
http://www.smartbillions.com

